Prediction of pH-dependent aqueous solubility of druglike molecules |
| |
Authors: | Hansen Niclas Tue Kouskoumvekaki Irene Jørgensen Flemming Steen Brunak Søren Jónsdóttir Svava Osk |
| |
Affiliation: | Center for Biological Sequence Analysis, BioCentrum, Technical University of Denmark, DK-2800 Lyngby, Denmark. |
| |
Abstract: | In the present work, the Henderson-Hasselbalch (HH) equation has been employed for the development of a tool for the prediction of pH-dependent aqueous solubility of drugs and drug candidates. A new prediction method for the intrinsic solubility was developed, based on artificial neural networks that have been trained on a druglike PHYSPROP subset of 4548 compounds. For the prediction of acid/base dissociation coefficients, the commercial tool Marvin has been used, following validation on a data set of 467 molecules from the PHYSPROP database. The best performing network for intrinsic solubility predictions has a cross-validated root mean square error (RMSE) of 0.70 log S-units, while the Marvin pKa plug-in has an RMSE of 0.71 pH-units. A data set of 27 drugs with experimentally determined pH-solubility curves was assembled from the literature for the validation of the combined pH-dependent model, giving a mean RMSE of 0.79 log S-units. Finally, the combined model has been applied on profiling the solubility space at low pH of five large vendor libraries. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|