Affiliation: | a Center for Ion-Surface Reaction and Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, South Korea b Center for Ion-Surface Reaction and Department of Chemistry, Seoul National University, Kwanak-ku, Shinrim-dong, Seoul 151-742, South Korea |
Abstract: | We have employed a classical molecular dynamics simulation to investigate the energy transfer of a heavy projectile ion to a surface, i.e. Cs+ impacting onto Pt(1 1 1), for incidence energies between 25 and 100 eV and an incidence angle of 45°. The in-plane scattering results show a continuous increase of the final energy with increasing scattering angle. All scattering intensities have a main supraspecular peak and scattering into subspecular angles increases with increasing incidence energy. The large projectile/target mass ratio causes a high energy loss and a strong angular dependence of the final energy distribution. The trends of the energy transfer and its angular dependence can be understood in terms of a binary collision model, augmented with double collisions and an the image charge correction. Backscattering at high incidence energies leads to a distribution of very low final energies, indicating the onset of surface sputtering. Peaks in the energy spectra arise from impact site dependent scattering and can be assigned to single, double, triple or sputtering type collisions. |