首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dissipative generation for steady-state entanglement of two transmons in circuit QED
Abstract:We present a dissipative scheme to generate an entangled steady-state between two superconducting transmon qutrits separately embedded in two coupled transmission line resonators in a circuit quantum electrodynamics(QED) setup. In our scheme, the resonant qutrit-resonator interaction and photon hopping between resonators jointly induce asymmetric energy gaps in the dressed state subspaces. The coherent driving fields induce the specific dressed state transition and the dissipative processes lead to the gradual accumulation in the population of target state, combination of both drives the system into a steady-state entanglement. Numerical simulation shows that the maximally entangled state can be produced with high fidelity and strong robustness against the cavity decay and qutrit decay, and no requirements for accurate time control. The scheme is achievable with the current experimental technologies.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号