首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Characterization and Suppression Techniques for Degree of Radiation Damping in Inversion Recovery Measurements
Authors:Andrew Keeler
Institution:Department of Physics, Wheaton College, Wheaton, IL, USA
Abstract:Radiation damping is a phenomenon in which transverse nuclear magnetization couples with the current in a coil used in nuclear magnetic resonance experiments. This results in an additional magnetic field that increases the relaxation pathway for the magnetization, which then relaxes back to equilibrium more quickly. Radiation damping has been shown to affect longitudinal relaxation time (T1) measurement in inversion recovery experiments. In this work, we demonstrate that the extent of radiation damping depends upon the T1 of the sample. Radiation damping difference spectroscopy is used to characterize the severity of radiation damping, while gradient inversion recovery is used for radiation damping suppression in T1 measurements. At field strength of 9.4 T, for the radiation damping characteristic time (Trd) of 50 ms, these investigations show non-negligible radiation damping effects for T1 values greater than Trd, with severe distortions for T1 longer than about 150 ms, showing reasonable agreement with the predicted Trd. We also report a discrepancy between published expressions for the characteristic radiation damping time.
Keywords:NMR  inversion recovery  radiation damping
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号