On routing in VLSI design and communication networks |
| |
Authors: | Tamá s Terlaky |
| |
Affiliation: | a Department of Computing and Software, School of Computational Engineering and Science, McMaster University, Hamilton, Ont., Canada b College of Physical and Engineering Sciences, University of Guelph, Guelph, Ont., Canada c Canadian Imperial Bank of Commerce, Toronto, Ont., Canada |
| |
Abstract: | In this paper, we study the global routing problem in VLSI design and the multicast routing problem in communication networks. First we propose new and realistic models for both problems. In the global routing problem in VLSI design, we are given a lattice graph and subsets of the vertex set. The goal is to generate trees spanning these vertices in the subsets to minimize a linear combination of overall wirelength (edge length) and the number of bends of trees with respect to edge capacity constraints. In the multicast routing problem in communication networks, a graph is given to represent the network, together with subsets of the vertex set. We are required to find trees to span the given subsets and the overall edge length is minimized with respect to capacity constraints. Both problems are APX-hard. We present the integer linear programming (LP) formulation of both problems and solve the LP relaxations by the fast approximation algorithms for min-max resource-sharing problems in [K. Jansen, H. Zhang, Approximation algorithms for general packing problems and their application to the multicast congestion problem, Math. Programming, to appear, doi:10.1007/s10107-007-0106-8] (which is a generalization of the approximation algorithm proposed by Grigoriadis and Khachiyan [Coordination complexity of parallel price-directive decomposition, Math. Oper. Res. 2 (1996) 321-340]). For the global routing problem, we investigate the particular property of lattice graphs and propose a combinatorial technique to overcome the hardness due to the bend-dependent vertex cost. Finally, we develop asymptotic approximation algorithms for both problems with ratios depending on the best known approximation ratio for the minimum Steiner tree problem. They are the first known theoretical approximation bound results for the problems of minimizing the total costs (including both the edge and the bend costs) while spanning all given subsets of vertices. |
| |
Keywords: | Approximation algorithm Routing VLSI design Communication networks |
本文献已被 ScienceDirect 等数据库收录! |
|