Novel chiral PEDOTs for selective recognition of 3,4‐dihydroxyphenylalanine enantiomers: Synthesis and characterization |
| |
Authors: | Xuemin Duan Jingkun Xu Dufen Hu Kaixin Zhang Xiaofei Zhu Hui Sun Shouli Ming Zhipeng Wang Shijie Zhen |
| |
Affiliation: | School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, China |
| |
Abstract: | Two new 3,4‐ethylenedioxythiophene (EDOT) derivatives, (2R)‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐2‐yl)methyl 2‐phenylpropanoate ((R)‐EDTM‐PP) and (2S)‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐2‐yl)methyl 2‐phenylpropanoate ((S)‐EDTM‐PP), were synthesized and electropolymerized in dichloromethane (CH2Cl2) and terabutylammonium hexafluorophosphate (Bu4NPF6) system. As chiral electrodes, poly((2R)‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐2‐yl)methyl 2‐phenylpropanoate) ((R)‐PEDTM‐PP) and poly((2S)‐(2,3‐dihydrothieno[3,4‐b][1,4]dioxin‐2‐yl)methyl 2‐phenylpropanoate) ((S)‐PEDTM‐PP)‐modified glassy carbon electrodes (GCEs) were employed to successfully recognize 3,4‐dihydroxyphenylalanine (DOPA) enantiomers. Cyclic voltammetry presents that (R)‐PEDTM‐PP and (S)‐PEDTM‐PP had good redox activity and stability. Spectroelectrochemistry studies revealed (R)‐PEDTM‐PP and (S)‐PEDTM‐PP polymers have electronic bandgap of 1.68 and 1.66 eV, and could be reversibly oxidized and reduced accompanying with obvious color changes from dark blue to light purple. In addition, the electrochemical behavior, structural characterization, thermal stability, morphology and circular dichroism of (R)‐PEDTM‐PP and (S)‐PEDTM‐PP films were investigated in detail. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2238–2251 |
| |
Keywords: | characterization chiral chiral discrimination conducting polymer synthesis |
|
|