Organic–inorganic bonding in chitosan–silica hybrid networks: Physical properties |
| |
Authors: | Sara Trujillo Estela Pérez‐Román Apostolos Kyritsis José Luis Gómez Ribelles Christos Pandis |
| |
Affiliation: | 1. Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, Valencia, Spain;2. Department of Physics, National Technical University of Athens, Zografou Campus, Athens, Greece;3. CIBER in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN), Spain |
| |
Abstract: | Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol–gel using tetraethylortosilicate and 3‐glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic–inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1391–1400 |
| |
Keywords: | biomaterials chitosan GPTMS silicas sol‐gel TEOS thermal properties |
|
|