首页 | 本学科首页   官方微博 | 高级检索  
     


Fabrication and Characterization of Sulfonate‐containing Polystyrene/CaCO3 Core‐shell Nanoparticles
Authors:Yang Hu  Jishuai Wang  Guanzhi Cheng  Jie Shen  Chengyou Kan
Affiliation:Department of Chemical Engineering, Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
Abstract:Polystyrene (PSt) seed latex was first prepared via soap‐free emulsion polymerization in the presence of a small amount of methacrylic acid using ammonium persulfate as initiator, and then seeded emulsion polymerization of sodium 4‐styrenesulfonate (NaSS) and St was carried out to synthesize P(St‐NaSS) core latex using 2,2′‐azobisisobutyronitrile as initiator. After that, P(St‐NaSS)/CaCO3 core‐shell nanoparticles were fabricated by sequentially introducing Ca(OH)2 aqueous solution and CO2 gas into the core latex. The morphology of the core and core‐shell nanoparticles was characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and the state of CaCO3 shell was confirmed with high‐resolution scanning transmission electron microscope (HR‐STEM) and selected area electron diffraction (SAED). Results showed that PNaSS chains were successfully grafted onto the PSt seed surface, and length of the PNaSS "hairs" could be modulated by adjusting NaSS amount. Sulfonic groups of the PNaSS hairs served as additives in the formation and stabilization of amorphous CaCO3(ACC) and prevented ACC from sequent transformation into crystalline states. The amount of the anchored CaCO3 increased with the growth of PNaSS hair length, and reached 51 wt% (by thermalgravimetric analysis) under the optimal encapsulating temperature of 45°C. Moreover, the forming mechanism of P(St‐NaSS)/CaCO3 core‐shell nanoparticles was proposed.
Keywords:core‐shell nanoparticles  sulfonate  emulsion polymerization  encapsulation  amorphous calcium carbonate
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号