首页 | 本学科首页   官方微博 | 高级检索  
     


HSH-carbon: A novel sp2−sp3 carbon allotrope with an ultrawide energy gap
Authors:Jia-Qi Liu  Qian Gao  Zhen-Peng Hu
Affiliation:School of Physics, Nankai University, Tianjin 300071, China
Abstract:An sp2-sp3 hybrid carbon allotrope named HSH-carbon is proposed by the first-principles calculations. The structure of HSH-carbon can be regarded as a template polymerization of [1.1.1]propellane molecules in a hexagonal lattice, as well as, an AA stacking of recently reported HSH-C10 consisting of carbon trigonal bipyramids. Based on calculations, the stability of this structure is demonstrated in terms of the cohesive energy, phonon dispersion, Born−Huang stability criteria, and ab initio molecular dynamics. HSH-carbon is predicted to be a semiconductor with an indirect energy gap of 3.56 eV at the PBE level or 4.80 eV at the HSE06 level. It is larger than the gap of Si and close to the gap of c-diamond, which indicates HSH-carbon is potentially an ultrawide bandgap semiconductor. The effective masses of carriers in the VB and CB edge are comparable with wide bandgap semiconductors such as GaN and ZnO. The elastic behavior of HSH-carbon such as bulk modulus, Young’s modulus and shear modulus is comparable with that of T-carbon and much smaller than that of c-diamond, which suggests that HSH-carbon would be much easier to be processed than c-diamond in practice.
Keywords:first-principles calculation  novel carbon allotropes  pentagonal ring  
点击此处可从《Frontiers of Physics》浏览原始摘要信息
点击此处可从《Frontiers of Physics》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号