首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic analysis and suppressing chaotic impacts of a two-degree-of-freedom oscillator with a clearance
Authors:Guanwei Luo  Li Ma  Xiaohong Lv
Institution:1. School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China;2. School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
Abstract:A two-degree-of-freedom impact oscillator is considered. The maximum displacement of one of the masses is limited to a threshold value by the symmetrical rigid stops. Impacts between the mass and the stops are described by an instantaneous coefficient of restitution. Dynamics of the system is studied with special attention to periodic-impact motions and bifurcations. Period-one double-impact symmetrical motion and transcendental impact Poincaré map of the system is derived analytically. Stability and local bifurcations of the period-one double-impact symmetrical motions are analyzed by using the impact Poincaré map. The Lyapunov exponents in the vibratory system with impacts are calculated by using the transcendental impact map. The influence of the clearance and excitation frequency on symmetrical double-impact periodic motion and bifurcations is analyzed. A series of other periodic-impact motions are found and the corresponding bifurcations are analyzed. For smaller values of clearance, period-one double-impact symmetrical motion usually undergoes pitchfork bifurcation with decrease in the forcing frequency. For large values of the clearance, period-one double-impact symmetrical motion undergoes Neimark–Sacker bifurcation with decrease in the forcing frequency. The chattering-impact vibration and the sticking phenomena are found to occur in the region of low forcing frequency, which enlarges the adverse effects such as high noise levels, wear and tear and so on. These imply that the dynamic behavior of this system is very rich and complex, varying from different types of periodic motions to chaos, even chattering-impacting vibration and sticking. Chaotic-impact motions are suppressed to minimize the adverse effects by using external driving force, delay feedback and feedback-based method of period pulse.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号