摘 要: | 为提高混凝土坝等大体积结构参数反演效率和精度,减少由于应用有限元进行大量正分析而产生的计算机时,建立了一种结合Kriging代理模型和粒子群优化(PSO)算法的迭代更新反演方法。通过拉丁超立方抽样(LHS)方法确定初始样本点的空间分布,并使用有限元正分析获取对应的响应值,构建粗糙的初始代理模型,结合具有全局寻优能力的PSO算法,反演大体积结构的分区弹性模量,随之再代入有限元模型中,计算获取新的位移响应,并将其作为新样本加入到样本集中,通过迭代更新获得局部更高精度的代理模型。工程实际算例表明,该方法对混凝土坝等大体积结构参数反演精度较高和适用性好,且能大幅减少传统有限元模型反演方法所需消耗的正分析机时,提高反演效率。
|