Abstract: | Closed-vessel microwave digestion of nine standard reference plant materials (NIST, BCR, IAEA) and a laboratory standard of plant material with different Si contents assisted by HNO3 + H2O2 (procedure A), HNO3 + H2O2 + HF + H3BO3 (procedure B) and HNO3 + H2O2 + HBF4 (procedure C) were used to determine the recovery of 36 elements by ICP-MS: Ag, Al, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, In, La, Li, Mn, Mo, Nd, Ni, Pb, Pr, Rb, Sb, Se, Sn, Sr, Th, Tl, U, V, W, Y, Zn. Additions of HF + H3BO3 and HBF4 in procedures B and C exceeded by 10% (B1, C1) and 100% (B2, C2) the equivalent concentrations of Si in the samples determined by ICP-OES. Most recoveries of certified elements (e.g., Al*, Cu, Mo*, Rb*, Sb*, Th) decreased significantly (*p ≤ 0.05) with increasing Si content in plant reference materials digested by procedure A, while the recoveries from procedures B and C decreased insignificantly only for Mo and Sb. Digestions B and C gave significantly higher recoveries of Al, Sb, W and REEs, which were tighter to the reference values of these elements. A similar effect was found for Cu, Fe, Li, Ni, Sn, Th, Tl, V, Zn, Ba, Rb and Sr recoveries in samples with Si contents exceeding 2000 μg g−1. If the Si content in plant samples is less than 10 mg g−1, digestion of 0.5 g of plant samples through 0.05 mL of HF and 0.5 mL of 4% H3BO3 or 0.1 mL of HBF4 is recommended to get satisfactory results for most of the elements. For materials with Si content exceeding 10 mg g−1 the weight of the sample for digestion should be reduced to 0.25 g. However, the operation of potential interferences should be taken into account and eliminated through correction equations and adequate dilution of the samples. |