首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Revisiting the Balazs thought experiment in the presence of loss: electromagnetic-pulse-induced displacement of a positive-index slab having arbitrary complex permittivity and permeability
Authors:Kenneth J Chau  Henri J Lezec
Institution:1.Center for Nanoscale Science and Technology,National Institute of Standards and Technology,Gaithersburg,USA;2.School of Engineering,The University of British Columbia,Kelowna,Canada
Abstract:Over a half-century ago, Balazs proposed a thought experiment to deduce the form of electromagnetic momentum in a lossless and non-dispersive slab by imposing conservation of global momentum and system center-of-mass velocity after a pulse has traveled through the slab. Here, we revisit the Balazs thought experiment by explicit calculations of momentum transfer and center-of-mass displacement of a non-dispersive, positive-index slab of arbitrary complex permittivity and permeability using a set of postulates consisting only of Maxwell’s equations, a generalized Lorentz force law, the Abraham form of the electromagnetic momentum density, and conservation of both pulse and slab mass. In the case where the slab is lossless, we show that a pulse of arbitrary shape incident onto the slab conserves both global momentum and system center-of-mass velocity, consistent with the starting postulates of the Balazs thought experiment. In the case where the slab is lossy, we show, within the context of the above postulates, that global momentum is always conserved and that system center-of-mass velocity is conserved only when mass transfer from the pulse to the slab is described by an incremental pulse-mass-transfer model, proposed here, in which the pulse deposits mass in the slab with a distribution corresponding to the instantaneous mass density profile of the pulse.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号