首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ferric ion-ascorbic acid complex catalyzed calcium peroxide for organic wastewater treatment: Optimized by response surface method
Institution:1. Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China;2. State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Abstract:Hydrogen peroxide (H2O2) disproportionation, iron precipitation, and narrow pH range are the drawbacks of traditional Fenton process. To surmount these barriers, we proposed a ferric ion (Fe3+)-ascorbic acid (AA) complex catalyzed calcium peroxide (CaO2) Fenton-like system to remove organic dyes in water. This collaborative Fe3+/AA/CaO2 system presented an obvious improvement in the methyl orange (MO) decolorization, and also effectively eliminated other dyes. Response surface method was employed to optimize the running parameters for this coupling process. Under the optimized arguments (2.76 mmol/L Fe3+, 0.68 mmol/L AA, and 4 mmol/L CaO2), the MO removal achieved 98.90% after 15 min at pH 6.50, which was close to the computed outcome of 99.30%. Furthermore, this Fenton-like system could perform well in a wide range of pH (3–11), and enhance the H2O2 decomposition and Fe ions recycle. The scavenger experiment result indicated that hydroxyl radical, superoxide anion free radical, and singlet oxygen were acted on the dye elimination. Moreover, electron spin resonance analysis corroborated that the existences of these active species in the Fe3+/AA/CaO2 system. This study could advance the development of Fenton-like technique in organic effluent disposal.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号