Abstract: | ![]() The turbulent flow of an incompressible fluid is considered in a plane channel, a circular tube, and the boundary layer on a flat plate. The system of equations describing the motion of the fluid consists of the Reynolds equations and the mean kinetic energy balance equation for turbulent fluctuations. On the basis of an analysis of experimental data, hypotheses are formulated with respect to the eddy kinematic viscosity and lengthl entering into the expression for specific dissipation of turbulent energy into heat. It is assumed that in the central (outer) region of the flow in a channel, andl are constants, and expressions are taken for them which are used for a free boundary layer; near the walll varies linearly and almost linearly. Results of calculations of the turbulent energy distribution, the mean velocity, and the drag coefficient are in good agreement with the existing experimental data. The values of two empirical coefficients, which enter into the system of equations as the result of the hypotheses, are close to those obtained for a free boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 25–33, May–June, 1973. |