首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusion behavior of pharmaceutical O/W microemulsions studied by dynamic light scattering
Authors:Anuj Shukla  Reinhard H H Neubert
Institution:1. Department of Pharmacy, Institute of Pharmaceutics and Biopharmaceutics, Martin-Luther-University Halle-Wittenberg, 06120, Halle/Saale, Germany
2. Lehrstuhl für Physikalische Chemie II, Universit?t Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
Abstract:Dynamic light scattering experiments have been performed at various concentrations, of pharmaceutical oil-in-water microemulsions consisting of Eutanol G as oil, a blend of a high (Tagat O2) and a low (Poloxamer 331) hydrophilic–lipophilic balance surfactant, and a hydrophilic phase (propylene glycol/water). We probe the dynamics of these microemulsions by dynamic light scattering. In the measured concentration range, two modes of relaxation were observed. The faster decaying mode is ascribed classically to the collective diffusion D c (total droplet number density fluctuation). We show that the slow mode is also diffusive and suggest that its possible origin is the relaxation of polydispersity fluctuations. The diffusion coefficient associated with this mode is then the self-diffusion D s of the droplets. It was found that D c and D s had opposite volume fractions of oil plus surfactants (ϕ) dependence and a common limiting value D 0 for ϕ=0. Average hydrodynamic radius (R h=10.5 nm) of droplets was calculated from D 0. R h is supposed to compose the inner core, a surfactant film including possible solvent molecules, which migrate with the droplet. The concentration dependence of diffusion coefficients reflects the effect of hard sphere and the supplementary repulsive interactions which arises due to loss of entropy, when absorbed chains of surfactant intermingle on the close approach of the two droplets. This mechanism could also explain the observed stability of our systems. The estimated extent of polydispersity is 0.22 from the amplitude of slower decaying mode. The polydispersity in microemulsion systems is dynamic in origin. Results indicate that the time scale for local polydispersity fluctuations is at least three orders of magnitude longer than the estimated time between droplet collisions.
Keywords:O/W microemulsions  Dynamic light scattering  Dermal drug delivery
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号