Theoretical study on the mechanism of iron carbonyls mediated isomerization of allylic alcohols to saturated carbonyls |
| |
Authors: | Branchadell Vicenç Crévisy Christophe Grée René |
| |
Affiliation: | Departament de Química, Universitat Autònoma de Barcelona, Edifici Cn, 08193 Bellaterra, Spain. vicenc.branchadelli@uab.es |
| |
Abstract: | ![]() The conversion of allylic alcohols to enols mediated by Fe(CO)(3) has been studied through density functional theoretical calculations. From the results obtained a complete catalytic cycle has been proposed in which the first intermediate is the [(allyl alcohol)Fe(CO)(3)] complex. This intermediate evolves to the [(enol)Fe(CO)(3)] complex through two consecutive 1,3-hydrogen shifts involving a pi-allyl hydride intermediate. The highest Gibbs energy transition state corresponds to the partial decoordination ot the enol ligand prior to the coordination of a new allyl alcohol molecule that regenerates the first intermediate. Alternative processes for the [(enol)Fe(CO)(3)] complex such as [Fe(CO)(3)]-mediated enol-aldehyde transformation and enol isomerization have also been considered. The results obtained show that the former process is unfavourable, whereas the enol isomerization may compete with the enol decoordination step of the catalytic cycle. |
| |
Keywords: | allylic compounds density functional calculations homogeneous catalysis iron carbonyls isomerization |
本文献已被 PubMed 等数据库收录! |