首页 | 本学科首页   官方微博 | 高级检索  
     


Smoothed analysis of condition numbers and complexity implications for linear programming
Authors:John Dunagan  Daniel A. Spielman  Shang-Hua Teng
Affiliation:(1) Department of Mathematics, Second University of Naples, via Vivaldi, 43, I-81100 Caserta, Italy
Abstract:
We perform a smoothed analysis of Renegar’s condition number for linear programming by analyzing the distribution of the distance to ill-posedness of a linear program subject to a slight Gaussian perturbation. In particular, we show that for every n-by-d matrix Ā, n-vector [`(varvec b)]{bar{varvec b}}, and d-vector [`(varvec c)]{bar{varvec c}} satisfying ||[`(A)], [`(varvec b)], [`(varvec c)]||F £ 1{{||bar{bf A}, bar{varvec b}, bar{varvec c}||_F leq 1}} and every σ ≤ 1,
EA,varvec b,varvec c [logC (A,varvec b,varvec c) = O (log(nd/s)),mathop{bf E}limits_{bf A,varvec b,varvec c }{{[log C (bf A,varvec b,varvec c)} = O (log (nd/sigma)),}
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号