首页 | 本学科首页   官方微博 | 高级检索  
     


Constraint Handling in Genetic Algorithms: The Set Partitioning Problem
Authors:P.C. Chu  J.E. Beasley
Affiliation:(1) The Management School, Imperial College, London, SW7 2AZ, England
Abstract:In this paper we present a genetic algorithm-based heuristic for solving the set partitioning problem (SPP). The SPP is an important combinatorial optimisation problem used by many airlines as a mathematical model for flight crew scheduling.A key feature of the SPP is that it is a highly constrained problem, all constraints being equalities. New genetic algorithm (GA) components: separate fitness and unfitness scores, adaptive mutation, matching selection and ranking replacement, are introduced to enable a GA to effectively handle such constraints. These components are generalisable to any GA for constrained problems.We present a steady-state GA in conjunction with a specialised heuristic improvement operator for solving the SPP. The performance of our algorithm is evaluated on a large set of real-world problems. Computational results show that the genetic algorithm-based heuristic is capable of producing high-quality solutions.
Keywords:combinatorial optimisation  crew scheduling  genetic algorithms  set partitioning
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号