A CNDO-MO calculation of VCl4 |
| |
Authors: | C. A. L. Becker Dr. J. P. Dahl |
| |
Affiliation: | 1. Department of Chemistry, The University of Texas, 78712, Austin, Texas 2. Department of Chemistry, The University of Copenhagen, Universitetsparken 5, Copenhagen ?, Denmark
|
| |
Abstract: | The electronic structure of the tetrahedral molecule VCL4 is investigated within the CNDO-MO approximations. The metal and ligand valence orbitals, 3d, 4s, 4p; and 3s, 3p; respectively, have been systematically varied in an attempt to minimize the total energy; “optimum” V 4s(χ4 = 1.10) and 4p(d 3 p 2) orbitals have been established, but V 3d(d n ) and Cl(-δ) valence orbitals are only seen to favor lower energy for expanded orbitals. Since determining the one-electron molecular orbital level which is occupied by the vanadium lone electron is a major aspect of this investigation, all calculations have been performed in triplicate: calculations assuming the unpaired electron occupies the 3a 1, 2 e and 4t 2 molecular orbital (ground state electronic configurations2 A 1,2 E, and2 T 2, respectively). The Hartree-Fock equations have been solved by Roothaan's SCF method for open shells, but off-diagonal multipliers between filled and partly filled molecular orbitals of the same symmetry have been neglected. As a qualitative estimate of the error introduced by this simplification, the pertinent overlap integrals between the eigenfunctions from calculations for the three possible configurations,2 A 1,2 E, and2 T 2, are investigated as functions of the component 3d(d n ) and Cl(-δ) valence orbitals. The overlap integrals from the relevant2 A 1 and2 T 2 calculations are reasonably small, but the neglect of off-diagonal multipliers in calculations on the2 E state is found to be a poor approximation. An ordering of the non-filled molecular orbitals in VCl4 of 4t 2 < 3a 1 < 2e < 5t 2 seems most consistent with the numerous calculations. This suggested ground state electronic configuration of2 T 2 introduces new aspects to the consideration of a (dynamic) Jahn-Teller effect in VCl4. Experimental data pertinent to the electronic structure of VCl4 has been briefly summarized, but unfortunately it is inadequate to confirm or deny the present calculations. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|