首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A multilayer-reflection technique for three-dimensional photoelastic studies of perforated plates in bending
Authors:R Papirno  H Becker
Institution:1. Allied Research Associates, Inc., Concord, Mass.
Abstract:A photoelastic investigation was conducted to determine the stress-concentration factors around a large, symmetrically reinforced central hole in a square plate under 1∶1 and 2∶1 biaxial bending. Tapered-edge rings served as the reinforcement, and a major objective was to determine the ring proportions such that the maximum stress at the hole would be equal to the value which would be present in an unperforated plate under the same nominal stress. Because the stress distribution at the periphery of a hole in such a plate structure varies in the radial, tangential and thickness direction, it was necessary to employ a three-dimensional photoelastic technique. There were a number of serious disadvantages in the use of any of the standard procedures and a new three-dimensional technique for room-temperature use was developed which is particularly suitable for the determination of boundary stresses around holes in bending experiments. With the technique in its present state of development, the three-dimensional isochromatic distribution in the plate can be determined from a single model and, from this, the boundary value of stress. The new technique utilized a laminated-plate model. Selective aluminizing of the laminations allowed for the determination of fringe-order distributions in the thickness direction as well as in the radial and circumferential directions at the boundary of the hole in flat models. Uniaxial maximum fringe orders were determined and, from these, the biaxial values were obtained by superposition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号