首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synthesis of a caged bicyclic phosphates derived anhydride and its performance as a flame‐retardant curing agent for epoxy resins
Authors:Tongtong Ma  Liping Li  Tao Liu  Chuigen Guo
Abstract:A novel curing and flame‐retardant agent (PEPA‐TMAC) was successfully synthesized. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Use of PEPA‐TMAC as part of the curing agent in combination with another anhydride for a commercial epoxy resin (EP) was studied. Results of differential scanning calorimetry (DSC) indicated that PEPA‐TMAC was an effective curing agent for EP. The dynamic mechanical analysis (DMA) results showed that the glass transition temperature (Tg) and cross‐linking density (Ve) of EP composites exhibited an increase trend with the addition of PEPA‐TMAC. The limiting oxygen index (LOI) value of EP composites reached 26.9%, and the cone calorimeter results indicated that peak heat release rate (PHRR), total heat release (THR), smoke produce rate (SPR), and total smoke produce (TSP) remarkably decreased with increasing PEPA‐TMAC content. TGA data showed that the addition of PEPA‐TMAC greatly increased the amount of residual char during combustion. The morphology of the residual char was studied by SEM and showed that the addition of PEPA‐TMAC greatly increased the stability of EP composites. The thermogravimetric analysis (TGA), energy‐dispersive X‐ray spectroscopy (EDS), and FTIR results revealed the flame‐retardant mechanism that PEPA‐TMAC can promote the formation of charred layers with the phospho‐carbonaceous complexes in the condensed phase during burning of EP composites.
Keywords:caged bicyclic phosphate  curing flame‐retardant mechanism  epoxy resin
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号