首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Catalytic Dendrophanes as Enzyme Mimics: Synthesis,Binding Properties,Micropolarity Effect,and Catalytic Activity of Dendritic Thiazolio-cyclophanes
Authors:Tilo Habicher  Franois Diederich  Volker Gramlich
Abstract:Catalytic dendrophanes 9 and 10 were prepared as functional mimics of the thiamine-diphosphate-dependent enzyme pyruvate oxidase, and studied as catalysts in the oxidation of naphthalene-2-carbaldehyde ( 4 ) to methyl naphthalene-2-carboxylate ( 8 ) (Scheme 1). They are composed of a thiazolio-cyclophane initiator core with four generation 2 (G-2) poly(etheramide) dendrons attached. The two dendrophanes were synthesized by a convergent growth strategy by coupling dendrons 11 and 12 , respectively (Scheme 2) with (chloromethyl)-cyclophane 42 (Scheme 5) and subsequent conversion with 4-methylthiazole (Scheme 7). The X-ray crystal structures of cyclophane precursors 30 (Scheme 3), 37 , and 38 (Scheme 5) on the way to dendrophanes were determined (Fig. 1). The crystal-structure analysis of the benzene clathrate of 37 revealed the formation of channel-like stacks by the cyclophane which incorporate its morpholinomethyl side chain and the enclathrated benzene molecule (Fig. 2). The interactions of the enclathrated benzene molecule with the phenyl rings of the two adjacent cyclophane molecules in the stack closely resemble those between neighboring benzene molecules in crystalline benzene (Fig. 3). The characterization by MALDI-TOF-MS (Fig. 4), and 1H- and 13C-NMR spectroscopy (Fig. 5) proved the monodispersity of the G-2 dendrophanes 9 and 10 with molecular weights up to 11500 Da (for 10 ). 1H-NMR and fluorescence binding titrations in H2O and aqueous MeOH showed that 9 and 10 form stable 1 : 1 complexes with naphthalene-2-carbaldehyde ( 4 ) and 6-(p-toluidino)naphthalene-2-sulfonate ( 48 , TNS) (Tables 1 and 2). The evaluation of the fluorescence emission maxima of bound TNS revealed that the dendritic branching creates a microenvironment of distinctly reduced polarity at the cyclophane core by limiting its exposure to bulk solvent. Initial rate studies for the oxidation of naphthalene-2-carbaldehyde to methyl naphthalene-2-carboxylate in basic aqueous MeOH in the presence of flavin derivative 6 revealed only a weak catalytic activity of dendrophanes 9 and 10 (Table 3), despite the favorable micropolarity at the cyclophane active site. The low catalytic activity in the interior of the macromolecules was explained by steric hindrance of reaction transition states by the dendritic branches.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号