首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An Ultra‐Long‐Life Lithium‐Rich Li1.2Mn0.6Ni0.2O2 Cathode by Three‐in‐One Surface Modification for Lithium‐Ion Batteries
Authors:Xiaokai Ding  Dong Luo  Jiaxiang Cui  Huixian Xie  Qingqing Ren  Zhan Lin
Abstract:Voltage decay and capacity fading are the main challenges for the commercialization of Li‐rich Mn‐based layered oxides (LLOs). Now, a three‐in‐one surface treatment is designed via the pyrolysis of urea to improve the voltage and capacity stability of Li1.2Mn0.6Ni0.2O2 (LMNO), by which oxygen vacancies, spinel phase integration, and N‐doped carbon nanolayers are synchronously built on the surface of LMNO microspheres. Oxygen vacancies and spinel phase integration suppress irreversible O2 release and help lithium ion diffusion, while N‐doped carbon nanolayer mitigates the corrosion of electrolyte with excellent conductivity. The electrochemical performance of LMNO after the treatment improves significantly; the capacity retention rate after 500 cycles at 1 C is still as high as 89.9 % with a very small voltage fading rate of 1.09 mV cycle?1. This three‐in‐one surface treatment strategy can suppress the voltage decay and capacity fading of LLOs.
Keywords:layered oxides  N-doped carbon nanolayers  oxygen vacancies  spinel phase  voltage decay
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号