首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biopolymer Skeleton Produced by Rhizobium radiobacter: Stoichiometric Alternation of Glycosidic and Amidic Bonds in the Lipopolysaccharide O‐Antigen
Authors:Immacolata Speciale  Flaviana Di Lorenzo  Valentina Gargiulo  Gitte Erbs  Mari‐Anne Newman  Antonio Molinaro  Cristina De Castro
Abstract:The lipopolysaccharide (LPS) O‐antigen structure of the plant pathogen Rhizobium radiobacter strain TT9 and its possible role in a plant‐microbe interaction was investigated. The analyses disclosed the presence of two O‐antigens, named Poly1 and Poly2. The repetitive unit of Poly2 constitutes a 4‐α‐l ‐rhamnose linked to a 3‐α‐d ‐fucose residue. Surprisingly, Poly1 turned out to be a novel type of biopolymer in which the repeating unit is formed by a monosaccharide and an amino‐acid derivative, so that the polymer has alternating glycosidic and amidic bonds joining the two units: 4‐amino‐4‐deoxy‐3‐O‐methyl‐d ‐fucose and (2′R,3′R,4′S)‐N‐methyl‐3′,4′‐dihydroxy‐3′‐methyl‐5′‐oxoproline). Differently from the O‐antigens of LPSs from other pathogenic Gram‐negative bacteria, these two O‐antigens do not activate the oxidative burst, an early innate immune response in the model plant Arabidopsis thaliana, explaining at least in part the ability of this R. radiobacter strain to avoid host defenses during a plant infection process.
Keywords:biopolymers  carbohydrates  saccharides  structural biology  structure elucidation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号