首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enols of amides activated by the 2,2,2-trichloroethoxycarbonyl group
Authors:Basheer Ahmad  Rappoport Zvi
Institution:Department of Organic Chemistry, The Hebrew University, Jerusalem 91904, Israel.
Abstract:Reaction of isocyanates XNCO (X = Ar, i-Pr, t-Bu) with CH(2)(Y)CO(2)CH(2)CCl(3) (Y = CO(2)Me, CO(2)CH(2)CCl(3), CN) gave 15 amides XNHCOCH(Y)CO(2)CH(2)CCl(3) (6) or enols of amides XNHC(OH)=C(Y)CO(2)CH(2)CCl(3) (5) systems. The amide/enol ratios in solution depend strongly on the substituent Y and the solvent and mildly on the substituent X. The percentage of enol for group Y increases according to Y = CN > CO(2)CH(2)CCl(3) > CO(2)Me and decreases with the solvent according to CCl(4) > C(6)D(6) > CDCl(3) > THF-d(8) > CD(3)CN > DMSO-d(6). With the most acidic systems (Y = CN) amide/enol exchange is observed in moderately polar solvents and ionization to the conjugate base is observed in DMSO-d(6). The solid-state structure of the compound with Y = CN, X = i-Pr was found to be that of the enol. The reasons for the stability of the enols were discussed in terms of polar and resonance effects. Intramolecular hydrogen bonds result in a very low delta(OH) and contribute to the stability of the enols and are responsible for the higher percentage of the E-isomers when Y = CO(2)Me and the Z-isomers when Y = CN. The differences in delta(OH), delta(NH), K(enol), and E/Z enol ratios from the analogues with CF(3) instead of CCl(3) are discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号