a Guelph-Waterloo Physics Institute, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1 b Brockhouse Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4M1
Abstract:
We present direct measurements of the lifetime of the 4F5/2 and 2H(2)9/2 manifold in Nd3+:YLiF4, using a fluorescence pump-probe technique. The technique populates the 4F5/2 and 2H(2)9/2 manifold directly with a pump pulse. Via excited state absorption from this excited manifold, the 2F(2)5/2 manifold of Nd3+ is populated with a delayed probe pulse. The population in the 4F5/2 and 2H(2)9/2 manifold is monitored as a function of time by observing the change in integrated UV fluorescence from the 2F(2)5/2 manifold for each time delay between pump and probe pulses. The pump and probe beams come from the fundamental and second harmonic wavelengths of a femtosecond Ti:sapphire regenerative amplifier. The measured lifetime agrees well with the energy gap law, based on other nonradiative lifetime measurements from the literature for Nd3+:YLiF4.