首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Large Eddy Simulation of a Novel Gas-Assisted Coal Combustion Chamber
Authors:Robert Knappstein  Guido Kuenne  Lukas G Becker  Francesca di Mare  Amsini Sadiki  Andreas Dreizler  Johannes Janicka
Institution:1.Institute for Energy and Powerplant Technology,Darmstadt,Germany;2.Institute for Reactive Flows and Diagnostics,Darmstadt,Germany;3.Chair for Thermal Turbomachines and Aircraft Engines,Bochum,Germany
Abstract:In this work a recently presented combustion chamber that is specifically designed for the investigation of gas-assisted coal combustion and the validation of models is simulated under reactive conditions for the first time. In the configuration coal combustion is assisted and stabilized by a methane flame. In the course of the investigation, the configuration’s complexity is increased successively. Results of the isothermal single-phase flow are discussed first. Subsequently, reproducibility of the single-phase methane flame by means of the applied modeling approach is evaluated. In a further step, coal particles having the same thermal power as the methane flame are injected into the configuration. Particle histories, the conversion of the coal particles as well as its retroactive effect on the gas phase are investigated. Experimental results based on laser diagnostics are provided for all operating points and used for comparison with numerical results. Gas phase velocity fields for all operating points are available. In order to identify the reaction in the reactive single-phase case planar laser induced fluorescence of the OH-radical (OH-PLIF) was applied. Overall good agreement between numerical and experimental results could be obtained. In the Large Eddy Simulation (LES) a Flamelet Generated Manifold (FGM) based model is utilized. The four-dimensional manifold is spanned by two mixture fractions, a reaction progress variable and the enthalpy on which the gas phase chemistry gets mapped onto. Thereby, the model accounts for both, volatiles reaction and char conversion. Furthermore, finite rate chemistry effects as well as non-adiabatic physics are considered.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号