首页 | 本学科首页   官方微博 | 高级检索  
     


Ultrasonic transcutaneous energy transfer for powering implanted devices
Authors:Shaul Ozeri
Affiliation:School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel
Abstract:This paper investigates ultrasonic transcutaneous energy transfer (UTET) as a method for energizing implanted devices at power level up to a few 100 mW. We propose a continuous wave 673 kHz single frequency operation to power devices implanted up to 40 mm deep subcutaneously. The proposed UTET demonstrated an overall peak power transfer efficiency of 27% at 70 mW output power (rectified DC power at the load).The transducers consisted of PZT plane discs of 15 mm diameter and 1.3 mm thick acoustic matching layer made of graphite. The power rectifier on the implant side attained 88.5% power transfer efficiency.The proposed approach is analyzed in detail, with design considerations provided to address issues such as recommended operating frequency range, acoustic link matching, receiver’s rectifying electronics, and tissue bio-safety concerns. Global optimization and design considerations for maximum power transfer are presented and verified by means of finite element simulations and experimental results.
Keywords:Transcutaneous energy transfer   Powering implanted devices   Ultrasonic energy   Acoustic impedance matching
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号