首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energetics of Zn2+ binding to a series of biologically relevant ligands: A molecular mechanics investigation grounded on ab initio self-consistent field supermolecular computations
Authors:Nohad Gresh
Abstract:Detailed investigations are performed of the binding energetics of Zn2+ to a series of neutral and anionic ligands making up the sidechains of amino acid residues of proteins, as well as ligands which can be involved in Zn2+ binding during enzymatic activation: imidazole, formamide, methanethiol, methanethiolate, methoxy, and hydroxy. The computations are performed using the SIBFA molecular mechanics procedure (SMM), which expresses the interaction energy under the form of four separate contributions related to the corresponding ab initio supermolecular ones: electrostatic, short-range repulsion, polarization, and charge transfer. Recent refinements to this procedure are first exposed. To test the reliability of this procedure in large-scale simulations of inhibitor binding to metalloenzyme cavities, we undertake systematic comparisons of the SMM results with those of recent large basis set ab initio self-consistent field (SCF) supermolecule computations, in which a decomposition of the total ΔE into its four corresponding components is done (N. Gresh, W. Stevens, and M. Krauss, J. Comp. Chem., 16 , 843, 1995). For each complex, the evolution of each individual SMM energy component as a function of radial and in- and out-of-plane angular variations of the Zn2+ position reproduces with good accuracy the behavior of the corresponding SCF term. Computations performed subsequently on di- and oligoligated complexes of Zn2+ show that the SIBFA molecular mechanics (SMM) functionals, Epol and Ect, closely account for the nonadditive behaviors of the corresponding second-order energy contributions determined from the ab initio SCF calculations on these complexes and their nonlinear dependence on the number of ligands. Thus, the total intermolecular interaction energies computed with this procedure reproduce, with good accuracy, the corresponding SCF ones without the need for additional, extraneous terms in the intermolecular potential of polyligated complexes of divalent cations. © 1995 by John Wiley & Sons, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号