首页 | 本学科首页   官方微博 | 高级检索  
     


Rate constants of the reactions of O(3P) atoms with Br2 and NO2 over the temperature range 220-950 K
Authors:Yuri Bedjanian  Chaitanya Kalyan
Affiliation:Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS, Orléans, France
Abstract:The kinetics of the reactions of Br2 and NO2 with ground state oxygen atoms have been studied over a wide temperature range, T = 220-950 K, using a low-pressure flow tube reactor coupled with a quadrupole mass spectrometer: O + NO2 → NO + O2 (1) and O + Br2 → Br + BrO (2). The rate constant of reaction (1) was determined under pseudo–first-order conditions, either monitoring the kinetics of O-atom or NO2 consumption in excess of NO2 or of the oxygen atoms, respectively: k1 = (6.1 ± 0.4) × 10−12 exp((155 ± 18)/T) cm3 molecule−1 s−1 (where the uncertainties represent precision at the 2σ level, the estimated total uncertainty on k1 being 15% at all temperatures). The temperature dependence of k1, found to be in excellent agreement with multiple previous low-temperature data, was extended to 950 K. The rate constant of reaction (2) determined under pseudo–first-order conditions, monitoring the kinetics of Br2 consumption in excess of O-atoms, showed upward curvature at low and high temperatures of the study and was fitted with the following three-parameter expression: k2 = 9.85 × 10−16 T1.41 exp(543/T) cm3 molecule−1 s−1 at T = (220-950) K, which is recommended from the present study with an independent of temperature conservative uncertainty of 15% on k2.
Keywords:Br2  NO2  oxygen atom  rate coefficient  temperature dependence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号