首页 | 本学科首页   官方微博 | 高级检索  
     


Invariant Pattern Recognition Using Neural Networks Combined with Optical Wavelet Preprocessor
Authors:Katsuhisa Hirokawa  Kazuyoshi Itoh  Yoshiki Ichioka
Affiliation:(1) Eastern Hiroshima Prefecture Industrial Research Institute, 3-2-39, Higashifukatsu, Fukuyama, Hiroshima 721-0974, Japan;(2) Department of Applied Physics, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan;(3) Department of Material and Life Science, Osaka University, 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
Abstract:
A novel pattern-recognition system that is invariant against scale-, position- and rotation-changes is proposed. The system is composed of an array of modular neural networks with local space-invariant interconnections (FELSI) [Appl. Opt. 29 (1990) 4790] and a multiwavelet transform preprocessor. The wavelet decomposition of two-dimensional patterns is optically realized by the VanderLugt correlator. To obtain the multiwavelet transforms simultaneously, we synthesize a correlation filter of multiwavelets using computer-generated holograms. The learning process of the FELSI with the techniques of additional noise and weight decay is shown to contribute to the invariant recognition of the system.
Keywords:neural network  wavelet transform  invariant  recognition  optical  additional noise  weight decay
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号