A conjugate gradient algorithm for sparse linear inequalities
Authors:
Masao Fukushima
Affiliation:
Department of Applied Mathematics and Physics, Faculty of Engineering, Kyoto University, Kyoto 606, Japan
Abstract:
This paper presents a conjugate gradient method for solving systems of linear inequalities. The method is of dual optimization type and consists of two phases which can be implemented in a common framework. Phase 1 either finds the minimum-norm solution of the system or detects the inconsistency of the system. In the latter event, the method proceeds to Phase 2 in which an approximate least-squares solution to the system is obtained. The method is particularly suitable to large scale problems because it preserves the sparsity structure of the problem. Its efficiency is shown by computational comparisons with an SOR type method.