首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimization via experimental design of an SPE-HPLC-UV-fluorescence method for the determination of valsartan and its metabolite in human plasma samples
Authors:Iriarte Gorka  Ferreirós Nerea  Ibarrondo Izaskun  Alonso Rosa Maria  Maguregi Miren Itxaso  Gonzalez Lorena  Jiménez Rosa Maria
Institution:Kimika Analitikoaren Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea/UPV, Bilbo, Basque Country, Spain.
Abstract:A chemometric approach was applied for the optimization of the extraction and separation of the antihypertensive drug valsartan and its metabolite valeryl-4-hydroxy-valsartan from human plasma samples. Due to the high number of experimental and response variables to be studied, fractional factorial design (FFD) and central composite design (CCD) were used to optimize the HPLC-UV-fluorescence method. First, the significant variables were chosen with the help of FFD; then, a CCD was run to obtain the optimal values for the significant variables. The measured responses were the corrected areas of the two analytes and the resolution between the chromatographic peaks. Separation of valsartan, its metabolite valeryl-4-hydroxy-valsartan and candesartan M1, used as internal standard, was made using an Atlantis dC18 100 mm x 3.9 mm id, 100 angstroms, 3 microm chromatographic column. The mobile phase was run in gradient elution mode and consisted of ACN with 0.025% TFA and a 5 mM phosphate buffer with 0.025% TFA at pH 2.5. The initial percentage of ACN was 32% with a stepness of 4.5%/min to reach the 50%. A flow rate of 1.30 mL/min was applied throughout the chromatographic run, and the column temperature was kept to 40+/-0.2 degrees C. In the SPE procedure, experimental design was also used in order at achieve a maximum recovery percentage and extracts free from plasma interferences. The extraction procedure for spiked human plasma samples was carried out using C8 cartridges, phosphate buffer (pH 2, 60 mM) as conditioning agent, a washing step with methanol-phosphate buffer (40:60 v/v), a drying step of 8 min, and diethyl ether as eluent. The SPE-HPLC-UV-fluorescence method developed allowed the separation and quantitation of valsartan and its metabolite from human plasma samples with an adequate resolution and a total analysis time of 1 h.
Keywords:Experimental design  Human plasma  SPE‐HPLC  Valeryl‐4‐hydroxy‐valsartan  Valsartan
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号