首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional opal-like silica foams
Authors:Carn Florent  Saadaoui Hassan  Massé Pascal  Ravaine Serge  Julian-Lopez Beatriz  Sanchez Clément  Deleuze Hervé  Talham Daniel R  Backov Rénal
Affiliation:Centre de Recherche Paul Pascal, UPR 8641-CNRS, 115 Avenue Albert Schweitzer, 33600 Pessac, France. carn@crpp-bordeaux.cnrs.fr
Abstract:The synthesis of novel meso-/macroporous SiO2 monoliths by combining a nano-building-blocks-based approach with the confined geometry of a tailored air-liquid foam structure is described. The resulting macrostructure in which ordered close-packed colloidal silica nanoparticles constitute the monolith's scaffolds very closely resembles the tailored periodic air-liquid foam template. The void spaces between adjacent particles create textural mesoporosity; therefore, the as-prepared silica networks are characterized by hierarchical porosity at the macroscopic and mesoscopic length scales. The fine-tuning of both the liquid foam's fraction and the bubble size allows a rational design over the macroscopic cell morphologies (shape, Plateau border's length, and width). Striking results of this approach are the weak shrinkage of the as-synthesized opal-like scaffolds during the thermally induced sintering process and, in contrast with previous studies, the formation of closed-cell structures. Particle organization and the foam film surface roughness are investigated by atomic force microscopy (AFM), showing the influence of the liquid flow, within the foams' Plateau borders and films, on the final assemblies.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号