首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Antitumor Effect of Sinoporphyrin Sodium‐Mediated Photodynamic Therapy on Human Esophageal Cancer Eca‐109 Cells
Authors:Jianmin Hu  Xiaobing Wang  Quanhong Liu  Kun Zhang  Wenli Xiong  Chuanshan Xu  Pan Wang  Albert Wingnang Leung
Institution:1. Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, , Xi'an, Shaanxi, China;2. School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, , Shatin, Hong Kong, China
Abstract:The aim of this study was to evaluate the photodynamic effect of Sinoporphyrin sodium (DVDMS). In this study, Eca‐109 cells were treated with DVDMS (5 μg mL?1) and subjected to photodynamic therapy (PDT). The uptake and subcellular localization of DVDMS were monitored by flow cytometry and confocal microscopy. The phototoxicity of DVDMS was studied by MTT assay. The morphological changes were observed by scanning electron microscopy (SEM). DNA damage, reactive oxygen species (ROS) generation and mitochondria membrane potential (MMP) changes were analyzed by flow cytometry. Studies demonstrated maximal uptake of DVDMS occurred within 3 h, with a mitochondrial subcellular localization. MTT assays displayed that DVDMS could be effectively activated by light and the phototoxicity was much higher than photofrin under the same conditions. In addition, SEM observation indicated that cells were seriously damaged after PDT treatment. Furthermore, activation of DVDMS resulted in significant increases in ROS production. The generated ROS played an important role in the phototoxicity of DVDMS. DVDMS‐mediated PDT (DVDMS‐PDT) also induced DNA damage and MMP loss. It is demonstrated that DVDMS‐mediated PDT is an effective approach on cell proliferation inhibition of Eca‐109 cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号