首页 | 本学科首页   官方微博 | 高级检索  
     


Detection of multiple change-points in multivariate time series
Authors:M. Lavielle  G. Teyssière
Affiliation:(1) Laboratoire de Mathématiques, Université René Descartes et Université Paris-Sud, France;(2) Statistique Appliqué et MOdélisation Stochastique, CES, Université Paris 1 Panthéon-Sorbonne, France
Abstract:
We consider the multiple change-point problem for multivariate time series, including strongly dependent processes, with an unknown number of change-points. We assume that the covariance structure of the series changes abruptly at some unknown common change-point times. The proposed adaptive method is able to detect changes in multivariate i.i.d., weakly and strongly dependent series. This adaptive method outperforms the Schwarz criteria, mainly for the case of weakly dependent data. We consider applications to multivariate series of daily stock indices returns and series generated by an artificial financial market. __________ Translated from Lietuvos Matematikos Rinkinys, Vol. 46, No. 3, pp. 351–376, July–September, 2006.
Keywords:adaptive methods  multivariate time series  change-point detection  heteroskedasticity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号