首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于空间一致性降元的高光谱图像非监督分类
引用本文:岳江,张毅,徐杭威,柏连发. 一种基于空间一致性降元的高光谱图像非监督分类[J]. 光谱学与光谱分析, 2012, 32(7): 1860-1864. DOI: 10.3964/j.issn.1000-0593(2012)07-1860-05
作者姓名:岳江  张毅  徐杭威  柏连发
作者单位:南京理工大学电子工程与光电技术学院, 江苏 南京 210094
基金项目:国家自然科学基金项目(61071147)资助
摘    要:为了提高分类精度和边缘辨识性,该文引入图像空间一致性降元(pixels reduction with spatial coherence property, PRSCP)及线性回归分析,提出了一种基于空间一致性降元的非监督分类。该方法从像元光谱相似性出发,利用像元最小关联窗口合并相邻相似像元为像块完成降元。使用线性关系建模像块内像元的光谱向量,并利用F检验判断像块数据的线性显著性。利用一元线性回归(one dimensional linear regression, ODLR)估计出像块的基准向量,根据基准向量合并相似(同类)像块完成分类。利用AVIRIS数据评估了该方法性能,实验结果表明:与K-MEANS和ISODATA方法相比,该方法精度高、边缘辨识度好及鲁棒性强。

关 键 词:降元  空间一致性  一元线性回归  非监督分类  高光谱图像  
收稿时间:2012-02-08

An Unsupervised Classification of Hyperspectral Images Based on Pixels Reduction with Spatial Coherence Property
YUE Jiang,ZHANG Yi,XU Hang-wei,BAI Lian-fa. An Unsupervised Classification of Hyperspectral Images Based on Pixels Reduction with Spatial Coherence Property[J]. Spectroscopy and Spectral Analysis, 2012, 32(7): 1860-1864. DOI: 10.3964/j.issn.1000-0593(2012)07-1860-05
Authors:YUE Jiang  ZHANG Yi  XU Hang-wei  BAI Lian-fa
Affiliation:School of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract:In order to improve classification and edge accuracy,PRSCP and linear regression analysis are introduced;a new algorithm of unsupervised classification based on PRSCP is proposed.The algorithm procedure starts with the similarity of pixel spectral,and then makes use of minimum related window to combine similar pixels spatially adjacent into a block.Linear expression is applied to model the spectral vector of pixels in the same block,and significance of the linear expression is verified by F-statistic.The basic vector of block is estimated via ODLR,and blocks with similar basic vectors are combined into the same class.AVIRIS data is used to evaluate the performance of the proposed algorithm,which is also compared with K-MEANS and ISODATA.Experimental results show that the proposed algorithm outperforms K-MEANS and ISODATA in terms of classification accuracy,edge and robustness.
Keywords:Pixels reduction  Spatial coherence property  One dimensional linear regression(ODLR)  Unsupervised classification  Hyperspectral images
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号