首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A numerical eigenvalue study of preconditioned non‐equilibrium transport equations
Authors:Giuseppe Gambolati  Giorgio Pini
Abstract:The finite element integration of non‐equilibrium contaminant transport in porous media yields sparse, unsymmetric, real or complex equations, which may be solved by iterative projection methods, such as Bi‐CGSTAB and TFQMR, on condition that they are effectively preconditioned. To ensure a fast convergence, the eigenspectrum of the preconditioned equations has to be very compact around unity. Compactness is generally measured by the spectral condition number. In difficult advection‐dominated problems, however, the condition number may be large and nevertheless, convergence may be good. A numerical study of the preconditioned eigenspectrum of a representative test case is performed using the incomplete triangular factorization. The results show that preconditioning eliminates most of the original complex eigenvalues, and that compactness is not necessarily jeopardized by a large condition number. Quite surprisingly, it is shown that the preconditioned complex problem may have a more compact real eigenspectrum than the equivalent real problem. Copyright © 1999 John Wiley & Sons, Ltd.
Keywords:non‐equilibrium transport  finite elements  non‐symmetric eigenproblem  projection methods
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号