The effect of laminations on the vibrational modes of circular annular plates |
| |
Authors: | K. Williams H. Wang |
| |
Affiliation: | (1) Department of Mechanical Engineering, University of Saskatchewan, S7N 5A9 Saskatoon, Saskatchewan, Canada |
| |
Abstract: | The purpose of this article is to present an experimental study of the effect of laminations on the vibrations of circular annular plates. To obtain a basis for comparison with experimental data, the natural frequencies and mode shapes of a series of solid circular annular plates were calculated using the finite element method. An extensive range of experiments were performed on both a series of solid models and a series of laminated models under a range of normal clamping pressures. Based on the analytical and experimental results, it was found that the vibrational behavior of the laminated plates was dominated by that of the individual plate of which they were composed and that the effects of the laminations on vibrations were mode type dependent. The effects on the transverse vibrational modes were dependent on both the normal clamping pressure and the number of plates. The amplitude of the frequency response function for these modes reduced quickly, and the resonant frequency of such modes shifted higher as the clamping pressure or the number of plates increased. For the in-plane vibrational modes, the amplitude of the frequency response function reduced slightly as the number of plates increased; the resonant frequency of such modes could be considered to be a constant and independent of both the clamping pressure and the number of plates. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|