Beta-hairpin folding by a model amyloid peptide in solution and at an interface |
| |
Authors: | Knecht Volker |
| |
Affiliation: | Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany. vknecht@mpikg.mpg.de |
| |
Abstract: | The development of specific agents against amyloidoses requires an understanding of the conformational distribution of fibrillogenic peptides at a microscopic level. Here, I present molecular dynamics simulations of the model amyloid peptide LSFD with sequence LSFDNSGAITIG-NH2 in explicit water and at a water/vapor interface for a total time scale of approximately 1.8 micros. An extended structure was used as initial peptide configuration. At approximately 290 K, solvated LSFD was kinetically trapped in diverse misfolded beta-sheet/coil conformations. At 350 K, in contrast, the same type II' beta-hairpin in equilibrium with less ordered but also U-shaped conformations was observed for the core residues DNSGAITI in solution and at the interface in multiple independent simulations. The most stable structural unit of the beta-hairpin was the two residue turn (GA). The core residues exhibited a well-defined folded state in which the beta-hairpin was stabilized by a hydrogen bond between the side chain of Asn-385 and the main chain carbonyl group of Gly-387. My results suggest that beta-sheet conformations indicated from previous Fourier-transform infrared spectroscopy measurements immediately after preparation of the peptide solution may not arise from protofilaments as speculated by others but are a property of LSFD monomers. In addition, combined with previous results from X-ray scattering, my findings suggest that interfacial aggregation of LSFD implies a transition from U-shaped to extended peptide conformations. This work including the first simulations of reversible beta-hairpin folding at an interface is an essential step toward a microscopic understanding of interfacial peptide folding and self-assembly. Knowledge of the main conformation of the peptide core may facilitate the design of possible inhibitors of LSFD aggregation as a test ground for future computational therapeutic strategies against amyloid diseases. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|