首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational studies on the ground and excited states of BrOOBr
Authors:Li Yumin  Vo Christopher K
Institution:Department of Chemistry, East Carolina University, Greenville, North Carolina 27858, USA. liyu@mail.ecu.edu
Abstract:In this work, theoretical computations for the ground and excited states of BrOOBr have been performed at high-level ab initio molecular orbital theories. The ground-state geometries of BrOOBr in different forms (trans, cis, and twist form) have been optimized at the couple-cluster CCSD(T) level of theory with cc-pVTZ and aug-cc-pVTZ basis sets, which indicates that at CCSD(T)/cc-pVTZ level of theory, the twist form is 4.96 kcal/mol more stable than the trans form and 10.67 kcal/mol more stable than the cis form; at the CCSD(T)/aug-cc-pVTZ basis set the twist form is 4.33 kcal/mol more stable than the trans form and 9.54 kcal/mol more stable than the cis form. The vertical excitation energies and potential-energy curves for the singlet and triplet low-lying excited states of BrOOBr were calculated at both the complete active space self-consistent-field (CASSCF) level of theory and the multireference internally contracted configuration interaction (MRCI) level of theory. The differences of potential-energy curves at CASSCF and MRCI levels of theory are found for the BrOOBr excited states. At CASSCF level of theory, none of the BrOOBr excited states are bound. However, at MRCI level of theory, all the BrOOBr states studied in this work are bound or slightly bound at the Frank-Condon region. In addition, the scalar relativistic effect and the spin-orbital coupling effect on the vertical excitation energies of the electronic states of BrOOBr were estimated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号