首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DENTING AND FAILURE OF LIQUID-FILLED TUBES UNDER LATERAL IMPACT
Authors:Guoyun Lu  Jianping Lei  Zhijun Han  Zhifang Liu  Shanyuan Zhang
Institution:Guoyun Lu 1 Jianping Lei Zhijun Han Zhifang Liu Shanyuan Zhang (Institute of Applied Mechanics, Taiyuan University of Technology, Taiyuan 030024, China)
Abstract:In this paper, numerical simulation of impact cases of liquid-filled tube impacted by missiles is conducted with a commercial finite element code LS-DYNA, and the results obtained are compared with the experimental data to verify the validity of the numerical simulation model adopted. With the verified numerical method, the processes of dynamic response of a blunt indenter impacting an empty or liquid-filled three-span continuous tubular beam are studied when the parameter such as the indenter's mass, liquid's density or impact velocity is varied and the other conditions are kept the same. The simulation results indicate that the critical perforation energy and the deformation of the wall of the pipe are significantly influenced by the presence of the liquid and the pressure. The liquid filling the tube provides a ‘foundation’ pressure to resist and localize the deformation, which may affect the perforation process and lead to a reduction of the ballistic limit. The simulation results also indicate that the increase of the fluid density filled in the tube will decrease the ballistic limit, but the fluid density must be in some scope. The relationship between the ballistic limit velocity of the tube and the mass of the impact missile is nonlinear in the Cartesian coordinate while it becomes linear through logarithmic transformation.
Keywords:
本文献已被 CNKI ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号