首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sound generation by steady flow through glottis-shaped orifices
Authors:Zhang Zhaoyan  Mongeau Luc  Frankel Steven H  Thomson Scott  Park Jong Beom
Institution:Ray W Herrick Laboratories, Purdue University, West Lafayette, Indiana 47907-1077, USA. zhaoyan@glue.umd.edu
Abstract:Although the signature of human voice is mostly tonal, it also includes a significant broadband component. Quadrupolelike sources due to turbulence in the region downstream of the glottis, and dipolelike sources due to the force applied by the vocal folds onto the surrounding fluid are the two primary broadband sound generating mechanisms. In this study, experiments were conducted to characterize the broadband sound emissions of confined stationary jets through rubber orifices formed to imitate the approximate shape of the human glottis at different stages during one cycle of vocal fold vibrations. The radiated sound pressure spectra downstream of the orifices were measured for varying flow rates, orifice shapes, and gas mixtures. The nondimensional sound pressure spectra were decomposed into the product of three functions: a source function F, a radiation efficiency function M, and an acoustic response function G. The results show that, as for circular jets, the quadrupole source contributions dominated for straight and convergent orifices. For divergent jets, whistling tonal sounds were emitted at low flow rates. At high flow rates for the same geometry, dipole contributions dominated the sound radiated by free jets. However, possible source-load acoustic feedback may have hampered accurate source identification in confined flows.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号