首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Self-assembly approach toward chiral bimetallic catalysts: bis-urea-functionalized (salen)cobalt complexes for the hydrolytic kinetic resolution of epoxides
Authors:Park Jongwoo  Lang Kai  Abboud Khalil A  Hong Sukwon
Institution:Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA.
Abstract:A series of novel bis-urea-functionalized (salen)Co complexes has been developed. The complexes were designed to form self-assembled structures in solution through intermolecular urea-urea hydrogen-bonding interactions. These bis-urea (salen)Co catalysts resulted in rate acceleration (up to 13 times) in the hydrolytic kinetic resolution (HKR) of rac-epichlorohydrin in THF by facilitating cooperative activation, compared to the monomeric catalyst. In addition, one of the bis-urea (salen)Co(III) catalyst efficiently resolves various terminal epoxides even under solvent-free conditions by requiring much shorter reaction time at low catalyst loading (0.03-0.05 mol %). A series of kinetic/mechanistic studies demonstrated that the self-association of two (salen)Co units through urea-urea hydrogen bonds was responsible for the observed rate acceleration. The self-assembly study with the bis-urea (salen)Co by FTIR spectroscopy and with the corresponding (salen)Ni complex by (1)H NMR spectroscopy showed that intermolecular hydrogen-bonding interactions exist between the bis-urea scaffolds in THF. This result demonstrates that self-assembly approach by using non-covalent interactions can be an alternative and useful strategy toward the efficient HKR catalysis.
Keywords:bis‐urea  cooperative effects  epoxide opening  hydrogen bonds  self‐assembly
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号