首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Separated Flow and Buffeting Control
Authors:D Caruana  A Mignosi  C Robitaillié  M Corrège
Institution:1. Aerodynamics and Energetics Models Department, ONERA, 2 av. Edouard Belin, 31400, Toulouse, France
2. System Control and Flight Dynamics Department, ONERA, 2 av. Edouard Belin, 31400, Toulouse, France
Abstract:In transonic flow conditions, the shock wave/turbulent boundary layer interaction and the flow separations on the upper wing surfaces of civil aircraft induce flow instabilities, ‘buffet’ and then structural vibrations, ‘buffeting’. Buffeting can greatly affect aerodynamic behavior. The buffeting phenomenon appears when the aircraft's Machnumber or angle of attack increases. This phenomenon limits the aircraft's flight envelope. The objectives of this study are to cancel out or decrease the aerodynamic instabilities (unsteady separation, movement of the shock position) due to this type of flow by using control systems. The following actuators can be used: ‘Vortex Generators’ situated upstream of the shock position, a ‘Bump’ located at the shock position, and a new moving part designed by ONERA, situated on the trailing edge of the wing, the ‘Trailing Edge Deflector’ or TED. It looks like an adjustable ‘Divergent Trailing Edge’. It is an active actuator and can take different deflections or be driven by dynamic movements up to 250 Hz. Tests were performed in transonic 2D flow with models well equipped with unsteady pressure transducers. For high lift coefficients, a selected static position of the ‘Trailing Edge Deflector’ increases the wing's aerodynamic performances and delays the onset of buffet. Furthermore, in 2D flow buffet conditions, the ‘Trailing Edge Deflector’, driven by a closed-loop active control using the measurements of the unsteady wall static pressures, can greatly reduce buffet. The aerodynamic performances are not improved to the same extent by the bump actuator. From our experience, there is no effect on buffet or separated flow because of the incorrect positioning of the bump. All that can be observed is a local improvement on the intensity of the shock wave when the bump is very precisely situated at the shock position. Vortex generators have a great impact on the separated flow. The separated flow instabilities are greatly reduced and buffet is totally controlled even for strong instabilities. The aerodynamic performances of the airfoil are also greatly improved.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号