首页 | 本学科首页   官方微博 | 高级检索  
     检索      

镍铜合金立方体纳米晶的脉冲电沉积及电催化析氢性能
引用本文:孙强强,曹宝月,周春生,张国春,王增林.镍铜合金立方体纳米晶的脉冲电沉积及电催化析氢性能[J].高等学校化学学报,2020,41(6):1287.
作者姓名:孙强强  曹宝月  周春生  张国春  王增林
作者单位:1. 商洛学院化学工程与现代材料学院, 陕西省尾矿资源综合利用重点实验室, 商洛 726000;2. 陕西师范大学化学化工学院, 应用表面与胶体化学教育部重点实验室, 西安 710119
基金项目:陕西省自然科学基础研究计划项目(2019JM-092);陕西省自然科学基础研究计划项目(2018JQ2048);国家自然科学基金(21703134);商洛学院应用催化科研创新团队建设项目(19SCX01)
摘    要:以泡沫镍(NF)为基体, 采用常规脉冲伏安法合成了独立分相的金属Ni, Cu为主晶相、 平均粒径为70 nm的规则立方体结构镍铜合金电催化剂(NiCu/NF). 在电催化析氢反应中, NiCu/NF表现出优良的催化活性和优异的催化稳定性, 在电流密度为10 mA/cm 2时, 在1.0 mol/L KOH溶液中需要的析氢过电位仅为86 mV, 催化24 h的电位波动仅为12 mV. 二级复合纳米立方体结构使NiCu/NF展现出15.5倍于空白NF的电化学活性面积(ECSA), 为电催化反应提供了大量催化活性位点, 也为电极表面的电荷传输、 物质传递提供了充足的通道; Cu的引入以及NiO/Ni异质结的形成改善了邻近Ni原子的活性, 使镍基材料本征析氢活性得以改善, 三者协同促进了NiCu/NF电催化活性的提升. NiCu/NF电极在析氢过程中遵循Volmer-Heyrovsky机理, 反应速率由电极表面吸附氢原子的电化学脱附过程决定.

关 键 词:常规脉冲电沉积  镍铜合金  立方体纳米晶  析氢反应  
收稿时间:2020-02-17

Enhancing Hydrogen Evolution Performance of a Regular Cube NiCu Nanocrystalline Electrocatalyst Fabricated by Normal Pluse Electrodeposition †
SUN Qiangqiang,CAO Baoyue,ZHOU Chunsheng,ZHANG Guochun,WANG Zenglin.Enhancing Hydrogen Evolution Performance of a Regular Cube NiCu Nanocrystalline Electrocatalyst Fabricated by Normal Pluse Electrodeposition †[J].Chemical Research In Chinese Universities,2020,41(6):1287.
Authors:SUN Qiangqiang  CAO Baoyue  ZHOU Chunsheng  ZHANG Guochun  WANG Zenglin
Institution:1. Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, School of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China;2. Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Sha’anxi Normal University, Xi’an 710119, China
Abstract:Herein, a regular cube structured nickel-copper alloy electrocatalyst on nickel foam(NF) with phase-separated metallic Ni and Cu as the main crystal phase, and the average particle size of 70 nm, denoted as NiCu/NF, was prepared by normal pluse voltammetry. The as-obtained catalyst displays superior electroca-talytic activity towards hydrogen evolution reaction(HER), requiring an overpotential of merely 86 mV to afford 10 mA/cm 2 current density in 1 mol/L KOH. Moreover, NiCu/NF exhibits remarkable stability with a potential fluctuation of merely 12 mV during a 24 h continuous HER electrolysis. As a result, the two-stage composite cube-nanocrystalline structure gives rise to the 14.5-fold increased electrochemical active surface area(ECSA), exposing a huge number of catalytic active sites for HER, providing sufficient channels for charge transfer and material transfer on the electrode surface. On the other hand, the strong synergistic effect induced by Cu-introduction and the formation of NiO/Ni heterojunction brings prominent improvement of intrinsic HER activity of electrode materials via alteration of the electronic property of the adjacent Ni atoms. The three factors contribute collectively to the superior electrocatalytic performances of NiCu/NF electrode towards HER. Meanwhile, NiCu/NF electrode follows the Volmer-Heyrovsky mechanism with the reaction rate determined by the electrochemical desorption of hydrogen adsorbent on the electrode surface during HER. This study provides a new perspective for multi-structural nanoscale synthesis and promotes the development of NiCu-based electrode materials in energy conversion applications.
Keywords:Normal pluse electrodeposition  Nickel-copper alloy  Cube-nanocrystalline  Hydrogen evolution reaction  
本文献已被 CNKI 等数据库收录!
点击此处可从《高等学校化学学报》浏览原始摘要信息
点击此处可从《高等学校化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号