首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The potential of micro-electro-mechanical accelerometers in human vibration measurements
Authors:Marco Tarabini  Bortolino Saggin  Diego Scaccabarozzi  Giovanni Moschioni
Institution:Politecnico di Milano, Dipartimento di Meccanica, Polo Territoriale di Lecco, Via M. D’Oggiono 18/A, 23900 Lecco, Italy
Abstract:This paper evaluates the advantages and the drawbacks deriving from the use of MEMS (micro-electro-mechanical systems) accelerometers for hand-arm and whole-body vibration measurements. Metrological performances of different transducers were assessed through the identification of their frequency response function, linearity, floor noise and sensitivity to thermal and electromagnetic disturbances. Experimental results highlighted a standard instrumental uncertainty (including the nonlinearity) lower than 5% with the single frequency calibration procedure, such a value was reduced to 2%. The temperature effect was negligible and the electromagnetic disturbances sensitivity was comparable to that of the piezoelectric accelerometers. The compatibility of measurements obtained with MEMS accelerometers with those of piezoelectric-based measurement chains was verified for two specific applications. An example of direct transducer fixation on the skin for vibration transmissibility measurements is also presented. Thanks to the MEMS peculiarities – mainly small sizes and low cost – since novel approaches in the vibration monitoring could be pursued. For instance, it is possible to include by design MEMS accelerometers in any hand-held tool at the operator interface, or inside the seats structures of cars, tractors and trucks. This could be a viable solution to easily obtain repeatable exposure measurements and could also provide diagnostic signals for the tools or seats of functional monitoring.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号