首页 | 本学科首页   官方微博 | 高级检索  
     

Ag/C包覆对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响
引用本文:薛庆瑞,李建玲,徐国峰,侯朋飞,晏刚,代宇,王新东,高飞. Ag/C包覆对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响[J]. 物理化学学报, 2001, 30(9): 1667-1673. DOI: 10.3866/PKU.WHXB201406251
作者姓名:薛庆瑞  李建玲  徐国峰  侯朋飞  晏刚  代宇  王新东  高飞
作者单位:1. 北京科技大学冶金与生态工程学院, 北京 100083;
2. 中国电力科学研究院, 北京 100085
基金项目:国家自然科学基金(51172023,51372021),国家高技术研究发展计划项目(863)(2012AA110302)和国家电网公司基础性前瞻性科技项目(DG71-13-009)资助
摘    要:运用共沉淀和元素化学沉积相结合的方法,制备出了具有Ag/C 包覆层的层状富锂固溶体材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2. 通过X 射线衍射(XRD)、场发射扫描电子显微镜(SEM)、透射电子显微镜(TEM)、恒流充放电、循环伏安(CV),电化学阻抗谱(EIS)和X 射线能量散射谱(EDS)方法,研究了Ag/C 包覆层对Li[Li0.2Mn0.54Ni0.13Co0.13]O2电化学性能的影响. 结果表明,Ag/C 包覆层的厚度约为25 nm,Ag/C 包覆在保持了固溶体材料α-NaFeO2 六方层状晶体结构的前提下,显著地改善了Li[Li0.2Mn0.54Ni0.13Co0.13]O2 的电化学性能. 在2.0-4.8 V(vs Li/Li+)的电压范围内,首次放电(0.05C)容量由242.6 mAh·g-1提高到272.4 mAh·g-1,库仑效率由67.6%升高到77.4%;在0.2C倍率下,30 次循环后,Ag/C 包覆的电极材料容量为222.6 mAh·g-1,比未包覆电极材料的容量高出14.45%;包覆后的电极材料在1C下的容量仍为0.05C下的81.3%. 循环伏安及电化学交流阻抗谱研究表明,Ag/C包覆层抑制了材料在充放电过程中氧的损失,有效降低了Li[Li0.2Mn0.54Ni0.13Co0.13]O2颗粒的界面膜电阻与电化学反应电阻.

关 键 词:锂离子电池  固溶体材料  化学沉积法  表面改性  复合包覆
收稿时间:2014-05-09
修稿时间:2014-06-25

Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2
XUE Qing-Rui,LI Jian-Ling,XU Guo-Feng,HOU Peng-Fei,YAN Gang,DAI Yu,WANG Xin-Dong,GAO Fei. Effects of Surface Modification with Ag/C on Electrochemical Properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2[J]. Acta Physico-Chimica Sinica, 2001, 30(9): 1667-1673. DOI: 10.3866/PKU.WHXB201406251
Authors:XUE Qing-Rui  LI Jian-Ling  XU Guo-Feng  HOU Peng-Fei  YAN Gang  DAI Yu  WANG Xin-Dong  GAO Fei
Affiliation:1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China;
2. China Electric Power Research Institute, Beijing 100085, P. R. China
Abstract:A lithium-rich solid-solution layered cathode material, Li[Li0.2Mn0.54Ni0.13Co0.13]O2, was synthesized using a fast co-precipitation method, and surface modified withAg/C via chemical deposition. The electrochemical properties, structures, and morphologies of the prepared samples were investigated using X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), galvanostatic charge-discharge cycling, cyclic voltammetry (CV), electrochemical impedance spectra (EIS), and energy dispersive X-ray spectroscopy (EDS). The XRD results showed that the pristine and Ag/Ccoated cathode materials both have hexagonal α-NaFeO2 layered structures with the R3m space group. Microscopic morphological observations and EDS elemental mapping showed that a uniform Ag/C coating layer of thickness 25 nm was deposited on the surfaces of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 particles. The Ag/C-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 material gave an excellent electrochemical performance. The initial discharge capacity (0.05C) of the Ag/C- coated sample was 272.4 mAh ·g-1, with an initial coulombic efficiency of 77.4%, corresponding to 242.6 mAh·g-1 for the pristine sample, with an initial coulombic efficiency of 67.6%, in the potential range 2.0-4.8 V (vs Li/Li+). After 30 cycles (0.2C), the Ag/C-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 retained a capacity of 222.6 mAh·g-1, which was 14.45% higher than that of Li[Li0.2Mn0.54Ni0.13Co0.13]O2. We also found that the Ag/C coating improved the rate capability of the solid-solution material Li[Li0.2Mn0.54Ni0.13Co0.13]O2. The capacity retention (1C) of the Ag/C-coated sample was 81.3%, compared with the capacity at 0.05C. CV and EIS results showed that the Ag/C coating layer suppressed the oxygen release in the initial charge progress and lowered the surface film resistance and electrochemical reaction resistance of the pristine sample.
Keywords:Lithium ion battery  Solid solution material  Chemical deposition method  Surface modification  Compound coating
点击此处可从《物理化学学报》浏览原始摘要信息
点击此处可从《物理化学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号