首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermal properties of different transition metal forms of montmorillonite intercalated with mono-, di-, and triethanolammonium compounds
Authors:Ali E I Elkhalifah  M Azmi Bustam  T Murugesan
Institution:1. Department of Chemical Engineering, Faculty of Engineering, Al-Neelain University, Khartoum, 12702, Sudan
2. Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
Abstract:In the present study, different transition metal forms of montmorillonite have been intercalated with mono-, di-, and triethanolammonium cations via d coordination mechanism to investigate their thermal behavior, structural characteristics, surface properties, and elemental composition using TG, XRD, BET, and CHNS techniques. Thermogravimetric analysis showed two thermal transition steps for transition metal-exchanged montmorillonites, which attributed to desorption of the physically adsorbed water and hydrated water, and dehydroxylation of the structural water; whereas for ammonium-montmorillonite complexes, the TG curves showed three thermal transition steps which attributed to desorption of the adsorbed water and dehydration, decomposition of the ammonium cations in the interlayer space of montmorillonite, and the dehydroxylation of the structural water. The thermal analysis of ammonium-montmorillonites affirmed that the molar mass of amine compounds used affects both desorption temperature (position) and the amount of the adsorbed water (intensity). XRD results revealed that the molar mass of amine used has linear relation with the basal spacings of the corresponding ammonium-montmorillonites, indicating structural changes. BET results showed that the molar mass of amines has an inverse effect on the surface area of the studied samples. CHNS analysis for the studied samples quantitatively confirmed the intercalation of ammonium cations into the interlayer space of montmorillonite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号